翻訳と辞書
Words near each other
・ Hotelboy Ed Martin
・ HotelCoupons.com
・ Hotelicopter
・ Hotelier
・ Hotelier (TV series)
・ Hoteling
・ Hotell
・ Hotell Gyllene knorren
・ Hotell Kantarell
・ Hotell Pepparkaka
・ Hotellet
・ Hotelling
・ Hotelling's law
・ Hotelling's lemma
・ Hotelling's rule
Hotelling's T-squared distribution
・ Hotellneset
・ HotelQuickly
・ Hotels (magazine)
・ Hotels and Catering (constituency)
・ Hotels and tourist camps of Yellowstone National Park
・ Hotels in Istanbul
・ Hotels in London
・ Hotels in Meridian, Mississippi
・ Hotels in Moscow
・ Hotels in Saint Petersburg
・ Hotels in Toronto
・ Hotels Monastir
・ Hotels of Montpellier
・ Hotels.com


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hotelling's T-squared distribution : ウィキペディア英語版
Hotelling's T-squared distribution

In statistics Hotelling's ''T''-squared distribution is a univariate distribution proportional to the F-distribution and arises importantly as the distribution of a set of statistics which are natural generalizations of the statistics underlying Student's ''t''-distribution. In particular, the distribution arises in multivariate statistics in undertaking tests of the differences between the (multivariate) means of different populations, where tests for univariate problems would make use of a ''t''-test.
The distribution is named for Harold Hotelling, who developed it as a generalization of Student's ''t''-distribution.
==The distribution==
If the vector ''p''d''1'' is Gaussian multivariate-distributed with zero mean and unit covariance matrix N(''p''0''1'',''p''I''p'') and ''m''M''p'' is a ''p x p'' matrix with a Wishart distribution with unit scale matrix and ''m'' degrees of freedom W(''p''I''p'',''m'') then ''m''(''1''d' ''p''M−1''p''d''1'') has a Hotelling ''T2'' distribution with dimensionality parameter ''p'' and ''m'' degrees of freedom.〔Eric W. Weisstein, ''(CRC Concise Encyclopedia of Mathematics, Second Edition )'', Chapman & Hall/CRC, 2003, p. 1408〕
If the notation T^2_ is used to denote a random variable having Hotelling's ''T''-squared distribution with parameters ''p'' and ''m'' then, if a random variable ''X'' has Hotelling's ''T''-squared distribution,
:
X \sim T^2_

then〔
:
\frac X\sim F_

where F_ is the ''F''-distribution with parameters ''p'' and ''m−p+1''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hotelling's T-squared distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.